Exercise 33

Use the Intermediate Value Theorem to show that there is a root of the equation in the given interval.

$$
x^{5}-x^{3}+3 x-5=0, \quad(1,2)
$$

Solution

Let $f(x)=x^{5}-x^{3}+3 x-5$. This is a polynomial function, so it's continuous everywhere on the closed interval $[1,2]$. Find a value of x in this interval for which $f(x)$ is negative, and find a value of x in this interval for which $f(x)$ is positive.

$$
\begin{aligned}
& f(1)=(1)^{5}-(1)^{3}+3(1)-5=-1 \\
& f(2)=(2)^{5}-(2)^{3}+3(2)-5=25
\end{aligned}
$$

$N=0$ lies between $f(1)$ and $f(2)$, so by the Intermediate Value Theorem, there exists a root in the open interval $(1,2)$.

